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1 Introduction

Global supply chain disruptions can have serious economic consequences, reverberat-

ing across sectors and regions worldwide. Such disruptions, often stemming from unfore-

seen events such as pandemics, earthquakes, extreme weather events, nuclear accidents, or

geopolitical tensions, can lead to strained trade flows due to port closures, reduced ship-

ping capacity, congested trade routes, or a shortage of shipping containers, among other

complications. These challenges, in turn, can trigger an increase in the costs of international

trade, potentially leading to substantial effects on production, prices, and labor markets, as

well as reallocation within and across countries.

This paper quantitatively studies the labor market consequences of a generalized in-

crease in international trade costs. Specifically, we analyze an x% increase in the iceberg

trade costs of sending products across countries that reverts after τ years. In our baseline

exercise, we analyze a 12% shock that reverts after three years, which approximates the size

and duration of the trade-cost shock during the COVID-19 pandemic. However, we also

examine how the effects of the shock depend on its size (i.e., x = 6%, 18%, or 24%) or per-

sistence (i.e., τ = 2, 4, 5, or 6). We place special emphasis on how the shock impacts labor

markets within the United States, but turn to cross-country results towards the end of the

paper. Importantly, our framework can be easily applied to trade-cost shocks of different

size and duration and with different underlying causes.

We make use of the quantitative trade model developed by Rodriguez-Clare, Ulate,

and Vasquez (2022, henceforth RUV) but pair it a with a novel exposure measure, novel

data, and a focus on analyzing the effects of a trade-cost shock. The model features multi-

ple sectors linked by an input-output structure, sector-level trade that satisfies the gravity

equation, downward nominal wage rigidity (henceforth DNWR), and a home-production

sector that leads to an upward-sloping labor supply curve. Trade takes place between re-

gions, and workers can move across sectors in a given region subject to mobility costs. Each

period, workers draw idiosyncratic shocks to the utility of working in each sector. Based

on these draws, the costs of switching sectors, and expected future real income adjusted
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for unemployment, workers choose which sector to participate in.1

We capture DNWR as in Schmitt-Grohe and Uribe (2016). This implies that the nom-

inal wage in any period must be no less than a factor δ times the nominal wage in the

previous period and that involuntary unemployment arises when wages are constrained

by this lower bound.2 Given the presence of the DNWR, the model also requires a nom-

inal anchor that prevents nominal wages from rising enough to make the DNWR always

non-binding.3 We assume that world nominal GDP in dollars grows at a constant and ex-

ogenous rate γ. This assumption captures the regularity that central banks are unwilling to

allow inflation or unemployment to be too high (because of their related costs) while simul-

taneously keeping our model tractable. While this nominal anchor may not capture all the

complexities of the real world, it allows us to incorporate a rich trade structure with mul-

tiple countries and sectors, intermediate inputs, and forward-looking mobility decisions

into our trade framework while still being able to solve this otherwise-unwieldy model.4

In order to assess the susceptibility of a given region to a change in trade costs, we

derive a new exposure measure using a first-order approximation to nominal GDP. In par-

ticular, we compute the responsiveness of total value added in a region to the change in

iceberg trade costs across any two periods through its effects on labor demand. This for-

mula resembles the one in Adao et al. (2020, henceforth AAE), but it incorporates new

elements given the structure of our model. Specifically, besides considering the direct im-

pact of the trade cost shock, it also incorporates the associated change in marginal costs due

to input-output linkages. We use this exposure measure to compare how nominal GDP re-

sponds to the COVID-19-induced trade shock across U.S. states in the data with how the

same response occurs within the model.

1Our baseline model does not feature movement between regions in a given country, but one of our exten-
sions incorporates this feature. The consequences of allowing migration across regions are fairly small.

2See Dickens et al. (2007), Grigsby et al. (2019), and Hazell and Taska (2019) for papers that have found sup-
port for the presence of DNWR in the data. Labor-market frictions in the real world might go significantly
beyond DNWR, but our model uses this modeling device as a parsimonious way to capture such frictions
in a rich dynamic quantitative trade model.

3Our baseline analysis also assumes flexible exchange rates between the U.S. dollar and other countries’
currencies. However, we have also conducted an alternative analysis with fixed exchange rates, and the
implications for the United States are similar. The results of this analysis are available upon request.

4Introducing other types of nominal anchors prevents us from using the efficient Alvarez-and-Lucas type
algorithm developed in RUV to deal with the DNWR, increasing the computation time by several orders of
magnitude. Implementing more realistic nominal anchors is left for future research.
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We assemble a new dataset for sector-level input-output flows as well as trade flows

across all pairs of U.S. states and other countries in our sample. The final dataset combines

multiple sources, a set of proportionality assumptions, and implications from a gravity

model to construct sector-level trade flows across all region pairs in our sample. The re-

sulting dataset contains 87 regions (50 U.S. states, 36 additional countries, and an aggregate

rest of the world region) and 15 sectors (home production, 12 manufacturing sectors, ser-

vices, and agriculture) for our base year of 2019.

We quantify the effects of the shock in our model using the dynamic “exact-hat al-

gebra” approach to counterfactual analysis (c.f., Caliendo et al., 2019). This methodology

ensures that our model perfectly matches sector-level production, trade, and reallocation

patterns in the base year. We then introduce an unexpected increase in trade costs that

reverts after a certain number of years. It is important to note that while we consider a uni-

form increase in the iceberg trade costs of international trade (i.e., the shock is the same for

all region-sectors), these units of analysis certainly have differential exposures to the shock.

This is due to the fact that region-sectors differ on many relevant aspects like their reliance

on trade for consumption, sourcing of intermediate inputs, or selling of their production.

Besides the myriad parameters implicitly calibrated by the exact hat algebra approach

using data from the base year (2019), we only require an explicit calibration of four param-

eters. Namely: the DNWR parameter δ, the growth in world nominal GDP in dollars γ, the

inverse elasticity of mobility across sectors ν, and the trade elasticity 1 − σ. We normalize

δ to one, indicating that nominal wages cannot fall, without loss of generality. We then set

γ to 4%, in line with the relatively high nominal growth rate observed in recent years, but

we explore the robustness of our results to different values (i.e., γ = 2%, 3%, 5%, or 6%).

Finally, we obtain ν directly from RUV, and take σ from the trade literature.

Our model-based analysis shows a temporary yet long-lasting decrease in U.S. labor

force participation due to the shock. During the high trade cost period, engaging in the

home production sector (which provides a constant utility flow) becomes more appealing,

resulting in a decline in labor force participation. Once the shock dissipates, there is nega-

tive pressure on nominal wages as the economy adjusts to the lower trade costs, which in

the presence of DNWR can generate unemployment. The impact of the trade cost shock
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on the labor market varies by sector. There is a temporary employment increase in man-

ufacturing, a sector that is very tradable and where the United States is a net importer.

By contrast, the service and agricultural sectors experience temporary employment reduc-

tions. The manufacturing sector, where wages increase the most during the high trade cost

period, experiences the most unemployment when the shock dissipates.

We also find that the effect of the shock varies by state. States with larger service sec-

tors (such as Alaska, Nevada, and Hawaii) tend to experience a more significant decline

in labor force participation than those with larger manufacturing sectors (such as Ohio,

Pennsylvania, and Wisconsin), but additional factors such as the exposure to other coun-

tries and states also play an important role in determining the extent of the impact. To test

the model predictions, we collect information on nominal GDP at the state level and corre-

late its change with our exposure measure, finding a negative and significant relationship.

The coefficient for the effect of exposure on nominal GDP observed in the data and the

one predicted by the model are remarkably similar, suggesting an adequate fit between the

model and the data. This approach serves to isolate the effects of the trade cost shock on

GDP from other economic shocks that affected GDP during the pandemic period that we

intend to abstract from (i.e., health shocks, domestic lockdowns, demand shocks, etc.).

We also investigate how different assumptions affect our conclusions. To do so, we

consider alternative specifications where we vary the persistence of the shock, the size of

the shock, or the nominal growth rate of world GDP in dollars. In addition, we examine

how allowing for migration between U.S. states and varying the elasticity of moving across

sectors change our results. Our conclusions are qualitatively robust across these different

specifications. Quantitatively, one of the key lessons is that more monetary accommodation

in the form of a higher γ can mitigate the unemployment impacts of the shock.

Turning to cross-country results, the consequences of the shock for labor force partic-

ipation vary internationally and depend on size and trade openness. On the one hand,

countries like China, the United States, Brazil, and India, which are relatively large and

less reliant on international trade, experience a smaller decrease in labor force participa-

tion. On the other hand, small and open economies like Ireland, Estonia, Slovakia, and

Cyprus, which rely heavily on foreign intermediate inputs and importing/exporting, ex-
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perience a more significant decline in labor force participation. Furthermore, countries

that are net importers in a given sector tend to increase their participation relatively more

in that sector due to a cross-country expenditure-switching effect.

It is important to highlight that our model does not intend to fully explain the labor

market effects of the COVID-19 pandemic. In particular, our model does not account for

health-related concerns that could also affect participation decisions at the same time as the

supply chain disruptions, among other pandemic-related forces that affected employment

or wages. Instead, our exercise is useful for isolating the specific effects of an international

trade-cost shock and provides insights into the relevant economic mechanisms that would

be at play more generally during episodes of global supply chain disruptions.

Our paper contributes to the literature studying the causes and consequences of dis-

ruptions in global supply chains. While there are some papers studying the effects of

weather-related disruptions (e.g., Castro-Vincenzi, 2023; Balboni et al., 2023), or geopo-

litical events (Feyrer, 2021), most recent papers have focused on the relationship between

the COVID-19 pandemic and global supply chains. This literature has highlighted sup-

ply disruptions as one of the main factors explaining the decline in output and increase

in inflation. For instance, Bonadio et al. (2021) investigate the role of global supply chains

on growth during the pandemic and find that disruptions explain one-quarter of the GDP

decline. Meier and Pinto (2020) analyze the impact of Chinese lockdowns on the U.S. econ-

omy, finding that sectors with higher exposure to inputs from China experienced larger

decreases in output and employment. LaBelle and Santacreu (2022) exploit cross-industry

variation in sourcing patterns and find that exposure to supply-chain disruptions is associ-

ated with larger increases in the producer price index. Sforza and Steininger (2020) develop

a multi-sector model to show that global linkages amplified the pandemic shock.

Additionally, Alessandria et al. (2023) show in a two-country setting that inventory

management by firms can smooth the impact of delayed deliveries and thus affect the mag-

nitude and timing of labor demand shocks. Uncertainty regarding aggregate shocks (as in,

Handley and Limão, 2017) could also matter. While we abstract from useful elements that

other papers in this literature have studied (explicit lockdown measures, inventories, capi-

tal investment, shipping networks, uncertainty, etc.), we are the first to analyze the effect of
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global supply disruptions on labor markets using a dynamic trade model that incorporates

both costs of moving between sectors (and potentially regions) and unemployment. These

two features, plus input-output linkages and forward-looking agents, already deliver a rich

model with important implications for the impacts of supply chain disruptions.

Our paper also relates to the vast literature that studies the impacts of trade on lo-

cal labor markets using quantitative trade models. Most recent papers have focused on

the effects of the rise of China’s prevalence in international trade (RUV, Caliendo et al.,

2019; Galle et al., 2020, AAE), but other quantitative papers also examine migration shocks

(Caliendo et al., 2021, 2022) or automation (Galle and Lorentzen, 2022).5 Among these pa-

pers, RUV is the closest to our work. They present a dynamic quantitative trade model

with DNWR and use it to rationalize the empirical findings from the China-Shock liter-

ature. The shock itself is modeled as an increase in productivity in China from 2000 to

2007 that varies across sectors. In contrast, our paper uses a quantitative framework sim-

ilar to the one in RUV to study the labor market effects of the recent global supply chain

disruptions, modeled as an unexpected increase in international trade costs.6

Open-economy papers such as Gali and Monacelli (2005, 2008) or Clarida et al. (2002)

have incorporated nominal rigidities into macro models with a simplified trade structure.

Schmitt-Grohe and Uribe (2016) studies optimal policies in the presence of DNWR in a

small open economy and Guerrieri et al. (2021) analyzes monetary policy after pandemic-

induced sectoral shocks in a model with DNWR and a nominal anchor similar to ours. Our

contribution relative to this literature is to incorporate a hint of these important nominal

elements into a rich quantitative trade model to assess the impact of trade cost shocks.

The remainder of the paper is organized as follows. Section 2 provides a brief overview

of the model. Section 3 describes our data construction and baseline calibration. Section

4 presents the results of our baseline analysis for U.S. states. Section 5 investigates the

sensitivity of our results to changes in some of the key assumptions. Section 6 focuses on

how the results vary across countries and Section 7 concludes.

5This list is by no means exhaustive. Other recent papers study the impacts of trade shocks with unemploy-
ment effects generated via search and matching instead of DNWR (e.g. Kim and Vogel, 2020a,b; Dix-Carneiro
et al., 2020; Carrere et al., 2020).

6Our paper also adds to the rapidly growing literature in trade that discusses or incorporates nominal ele-
ments (see RUV, Comin and Johnson, 2020; Costinot et al., 2022; Ahn et al., 2022; Fadinger et al., 2022).
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2 Model Environment

In order to study the effects of increases in international trade costs, we use a dynamic

multi-sector quantitative trade model with nominal wage rigidities and an input-output

structure similar to the one in RUV. In this section, we discuss the main features of the

model, relegating further mathematical details to appendix A.

The model incorporates a total number of I regions (I = 87, formed of 50 U.S. states,

36 other countries, and an aggregate rest of the world region) and S sectors (S = 15, specif-

ically home production, 12 manufacturing sectors, services, and agriculture). The “home

production” sector is meant to capture useful activities conducted at home (e.g., taking care

of family members, cooking, cleaning, enjoying leisure) that are not remunerated as work.

In the baseline model, we assume that there is no mobility across countries or across states

of the U.S. In an extension, we allow for migration across U.S. states, but this makes little

difference for our results.

Total consumption in the model is a Cobb-Douglas aggregate of consumption across

all the market sectors with given time-invariant expenditure shares.7 As in a multi-sector

Armington trade model, consumption within a given market sector (denoted with s) is a

CES aggregate of the good produced by each of the regions, with an elasticity of substitu-

tion denoted by σs. In principle, each region can produce the goods in all of the sectors, but

they might have very low productivity in some of these sectors.

We denote the region i, sector s, and time t triad as (i, s, t). Production uses labor and

intermediate inputs, but no capital. Specifically, production of the final good in (i, s, t) takes

the following Cobb-Douglas form:

Yi,s,t = Ai,s,tL
ϕi,s
i,s,t

S

∏
k=1

Mϕi,ks
i,ks,t,

where Ai,s,t is total factor productivity in (i, s, t), Li,s,t is employment in (i, s, t), Mi,ks,t is the

quantity of intermediate inputs of sector k used in (i, s, t), ϕi,s is the time-invariant labor

7This assumption is made for tractability and does not capture changes in consumption patterns that might
have occurred during the pandemic, which we intentionally abstract from.
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share in (i, s), and ϕi,ks is the share of inputs that sector s uses from sector k in region i.

Production has constant returns to scale, i.e. ϕi,s + ∑k ϕi,ks = 1.

There are iceberg trade costs τij,s,t ≥ 1 for sending the product of sector s from region i

to region j at time t. These τ’s will play an important role because they are the ones getting

shocked when the economy faces an increase in trade costs generating the supply chain

disruptions.

There is perfect competition in production. Letting Wi,s,t denote the wage in dollars

in (i, s, t) and Pi,k,t denote the dollar price of the composite good of sector k, in region i, at

time t, then the dollar price in region j of the (i, s, t) good is:

pij,s,t = τij,s,t A−1
i,s,tW

ϕi,s
i,s,t

S

∏
k=1

Pϕi,ks
i,k,t .

This expression describes all four factors affecting the price of sending the individual good

of sector s from region i to region j at time t; namely: iceberg trade costs, technology at

the sector-region of origin, the wage at the sector-region of origin, and intermediate input

prices (in all sectors) at the origin location.

We denote the number of agents participating in (i, s, t) by ℓi,s,t, whose behavior is

described below. In a standard trade model, employment in a sector-region has to equal

labor supply in that sector-region, i.e. Li,s,t = ℓi,s,t. We depart from this assumption and

instead follow Schmitt-Grohe and Uribe (2016) by allowing for a downward nominal wage

rigidity (DNWR) specifying that the nominal wage in (i, s, t) has to be greater than δ times

the nominal wage in (i, s, t − 1), that is:

Wi,s,t ≥ δWi,s,t−1.

Given this rigidity, employment does not necessarily has to equal labor supply; it could be

strictly below it.8 This is captured by the following weak inequality:

Li,s,t ≤ ℓi,s,t.

8Formally, the DNWR applies in the local currency units of region i, which need to be converted into U.S.
dollars using an appropriate exchange rate. This is described formally in appendix A.
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Importantly, there can only be unemployment if the wage is at its lower bound. There-

fore, the previous two inequalities are augmented by a complementary slackness condition,

indicating that at least one of them always has to hold with equality:

(ℓi,s,t − Li,s,t)(Wi,s,t − δWi,s,t−1) = 0.

The previous equation says that wage and employment are determined by supply and

demand when the wage is away from its lower bound. By contrast, when the wage lower

bound is binding, the market does not clear, and there is rationing (i.e., unemployment).

Returning to the determination of ℓi,s,t, agents in the model can either engage in home

production (sector zero) or look for work in the labor market (sectors 1 through S). Partic-

ipating in home production results in an exogenous and time-invariant real level of con-

sumption which does not depend on labor market conditions. By contrast, a given market

sector s > 0 yields a real level of consumption ci,s,t which is endogenous.

Given the existence of downward nominal wage rigidity, agents must take into ac-

count the possibility of unemployment when deciding which sector to participate in. To

simplify the analysis, we assume a representative agent in each sector-region.9 Since a

fraction Li,s,t/ℓi,s,t of agents is actually employed in (i, s, t), and employed agents obtain

a nominal wage of Wi,s,t, the real level of consumption ci,s,t from participating in market

sector s is given by:

ci,s,t =
Wi,s,t

Pi,t
· Li,s,t

ℓi,s,t
,

where Pi,t is the aggregate price index in region i.

Agents choose their sector while facing idiosyncratic preference shocks, switching

costs, and incorporating into their decision the expected future income in all sectors (i.e.,

the ci,s,t’s) with perfect foresight. The idiosyncratic preference shocks are assumed to have

a Gumbel distribution, making the participation decision tractable and allowing for closed-

form expressions (see appendix A for additional details on the derivations). Importantly,

9This is equivalent to assuming that the income generated in a sector-region is equally shared between all
agents in that sector-region.
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there is an elasticity 1/ν of moving across different sectors within any given region.

Since the model contains nominal elements (namely the DNWR) it is also important

to introduce a “nominal anchor”, preventing nominal wages from rising so much in each

period as to make the DNWR always non-binding. We implement a nominal rule that

captures the idea that central banks are unwilling to allow inflation or unemployment to

be too high (because of their related costs which, in the case of inflation, are outside of the

model) while at the same time being amenable for quantification.10 Specifically, we assume

that world nominal GDP in dollars grows at a constant rate γ across years:

I

∑
i=1

S

∑
s=1

Wi,s,tLi,s,t = (1 + γ)
I

∑
i=1

S

∑
s=1

Wi,s,t−1Li,s,t−1.

Although this assumption is useful for solving the model, it has limitations and might

not reflect the optimal monetary policy of any given country. Thus, we refrain from dis-

cussing the implications of the trade-cost shock on inflation since the model is not well

suited to study this aspect. Nevertheless, the model can provide valuable insights into the

behavior of relative prices, which we discuss in our results section.

As mentioned above, the main objective of the paper is to examine the effects of an

unanticipated trade-cost shock. To do so in a computationally tractable way, we employ

a technique known as “dynamic exact hat algebra”, which allows the model to implicitly

match production, trade, and reallocation patterns in a given base year. By doing so, one

can then introduce a percentage change in any of the model’s fundamentals, such as trade

costs, without knowing the initial levels of these fundamentals, and study the economy’s

dynamic response to such a shock.

To analyze the effects of the trade cost shock, we assume that the base year is 2019. At

that point, the shock has not hit the economy and the model perfectly matches production,

trade, and sectoral flow patterns as they occurred in the real world. Then, the shock is

introduced in 2020, and the agents in the model learn the full path of the shock (recall that

the agents in the model have “perfect foresight”). As the shock hits, employment, prices,

10The tractability of this nominal anchor allows us to solve our model using a fast contraction mapping
algorithm in the spirit of Alvarez and Lucas (2007) developed in RUV to deal with the complementary
slackness condition implied by the DNWR. A similar nominal anchor is used in Guerrieri et al. (2021).

10



production, and trade respond accordingly.

2.1 Regional Exposure Measure

We are also interested in assessing how different regions are exposed to trade cost

shocks. To this end, we use the labor demand equation from our model and a first-order ap-

proximation to construct a regional exposure measure that tracks how the change in trade

costs impacts regional value added (which is equivalent to nominal GDP). The derivation

details are in Appendix B. This formula can be understood as a comparative-statics exercise

that tells us how much demand across regions (and, therefore, countries) shifts in response

to trade cost shocks. This measure is somewhat similar to the one in AAE, but it includes

new elements due to the presence of intermediate inputs in our model.11 As discussed in

the appendix, the exposure formula for region i after a change in the vector of trade costs

τ̂ is given by:

η̂i(τ̂) =
S

∑
s=1

(1 − σs)ωi,s,0θi,s(τ̂).

In the previous expression, (1 − σs) is the trade elasticity in sector s, ωi,s,0 is the share of

the wage bill in market i that goes to sector s in the base year (denoted with a zero even

though in our implementation it will be the year 2019), and θi,s(τ̂) is the shift in demand

for the sector s good of region i:

θi,s(τ̂) =
I

∑
j=1

rij,s,0

(
τ̂ij,s + m̂ci,s −

I

∑
q=1

λqj,s,0(τ̂qj,s + m̂cq,s)

)
.

The variable rij,s,0 denotes the share of market i’s sales in sector s that go to market j in

the base year, λqj,s,0 denotes the share of market j’s purchases in sector s that come from

market q in the base year, τ̂ij,s = ln(τij,s,2022) − ln(τij,s,2019) denotes the log difference in

the iceberg trade costs between the base year and the high-trade-cost years, and m̂ci,s =

ln(mci,s,2022)− ln(mci,s,2019) denotes the log difference in the marginal cost between the base

11AAE adds labor force participation to a classic trade model but does not incorporate intermediate inputs
via an input-output structure.
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year and the high-trade-cost years.12 The changes in marginal costs m̂c, can themselves be

expressed as a function of the change in trade costs, as discussed in Appendix B, and they

appear in the previous formula due to the presence of intermediate inputs. If labor was the

only factor of production, then the m̂c’s would disappear from the previous expression,

and our formula would more closely resemble equation (17) of AAE.

η̂i(τ̂) represents market i’s “revenue shock exposure”. It is the sum across sectors of

the shock to the demand for the good of region i in each sector, θi,s(τ̂), weighted by that

sector’s share in i’s wage bill in the base year ωi,s,0. The sector-level demand shock, θi,s(τ̂),

is itself the sum across destinations j of the impact of market i’s own trade shock (includ-

ing the effects via the marginal cost) on the demand for its good minus the demand shift

caused by competitors’ trade shocks (including the effects via the marginal cost) in that

sector, weighted by the revenue importance of each destination in the base year rij,s,0. Note

that all components of η̂i(τ̂) can be computed with information on bilateral trade flows in

the base year plus measures of the bilateral trade shocks. In our baseline quantitative im-

plementation, τ̂ij,s ≈ 12% if i and j are regions located in different countries, while τ̂ij,s = 0

if i = j or if i and j are regions of the same country (e.g., two U.S. states).

The previous exposure measure provides a useful way to assess the impact of shocks

on a given region by taking into account how it competes with all other regions in all

possible destination markets, including its own. If a region is in autarky, a change in the

τ’s has no effect and θi,s(τ̂) = 0 for all s, resulting in η̂i(τ̂) = 0. Regions that are more open

or have higher wage-bill shares in open sectors are more exposed to trade cost shocks.

3 Data, Calibration, and Shocks

3.1 Data Construction

We put together a combination of datasets to create a matrix of sector-by-region bi-

lateral trade flows for all U.S. states and countries. Our data construction follows steps

that are related to those in RUV, but setting the base year to 2019 (as opposed to 2000 as

12Recall that in our baseline quantitative implementation the high trade costs will start in 2020, persist during
2021 and 2022, and revert back to their 2019 levels in 2023.
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in RUV) requires incorporating new data sources such as the OECD’s Inter-Country Input-

Output Database (ICIO) since the World Input-Output Database (WIOD) is not available

after 2014. A summary of the data-construction process is provided here, with additional

details available in Appendix C.

Labor, input, and consumption shares: Data from the BEA (for U.S. states) and from the

ICIO are used to compute the value-added share in gross output (which is used as the labor

share in the model) and the input-output coefficients for each region. Consumption shares

can be inferred based on trade flows, labor shares, and intermediate input shares.

Bilateral flows: The model requires bilateral trade flows in all sectors between any pair

of regions in the sample. These are constructed in four steps, which we briefly describe

below, relegating additional details to Appendix C.2.

In the first step, we use sector-level bilateral trade data among countries directly from

the ICIO database. In the second step, we compute bilateral trade flows in the manufac-

turing sector across U.S. states. This involves combining the ICIO database with the Com-

modity Flow Survey (CFS). Initially, we determine bilateral expenditure shares for states

and sectors based on CFS. Subsequently, employing a proportionality assumption, we al-

locate the total U.S. domestic sales from ICIO according to these bilateral shares. This step

ensures alignment between the trade flows within the bilateral trade matrix for the 50 U.S.

states and the total U.S. internal sales from ICIO within each sector.

Moving to the third step, we use data from the Import and Export Merchandise Trade

Statistics from the U.S. Census to compute sector-level bilateral trade flows in manufactur-

ing and agriculture between individual U.S. states and other countries in our sample for

2018. To maintain coherence, we employ the same proportionality assumption for bilateral

trade flows between U.S. states and other countries, aligning these flows with the aggre-

gated sectoral trade figures between the U.S. and other nations, according to the ICIO.

In the final step, we use data on production and expenditure in services from the Re-

gional Economic Accounts of BEA, alongside ICIO data and bilateral distance between

regions, to construct the trade flows in services between regions consistent with a gravity

structure. Similarly, we combine data with a gravity-based approach for trade flows in

agriculture, drawing from data sourced from the Agricultural Census, the National Ma-
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rine Fisheries Service Census, and ICIO. Through this gravity approach, the bilateral trade

flows in services and agriculture coincide with the overall trade aggregates in these sectors

between all countries, according to ICIO.

Labor flows across sectors and regions: Data for intersectoral mobility for each U.S. state

is obtained from the Current Population Survey (CPS), while frictionless mobility is as-

sumed for other countries. In the extension allowing for migration within the U.S., data for

interstate mobility is obtained from the American Community Survey (ACS).

Labor supply: Data on employment by sector (including home production) comes from

the WIOD Socio Economic Accounts, the International Labor Organization, the U.S. Cen-

sus, and the ACS. As in RUV, only observations for people aged between 25 and 65 are

kept. Labor force participation is measured as the share of individuals in that age group

who are either employed or unemployed.

Nominal GDP across U.S. states: We also collect information on the nominal GDP of

each U.S. state between 2019 and 2022 from the Federal Bank of St. Louis’ FRED. We use

these data to test how the relationship between nominal value added and exposure to the

trade cost shock compares between the model and the data.

3.2 Parameter Calibration

Table 1 describes the parameters used in the baseline specification. Notice that γ (the

nominal growth rate of world GDP in U.S. dollars) and δ (the downward nominal wage

rigidity parameter) are not separately identified. For a given δ, if γ is higher, then the

DNWR is less likely to bind. Likewise, for a given γ, if δ is lower, then the DNWR is less

likely to bind. Therefore, we require a normalization and set δ = 1, indicating that nominal

wages in dollars cannot fall, and putting the burden of the nominal adjustment on γ.

We set γ = 4%, due to the high nominal growth rate in the post-pandemic period. We

discuss the implications of different γ’s (between 2% and 6%) in Section 5. The implications

go in the expected direction. The higher the γ, the less binding the DNWR is, and the less

unemployment is generated in the model. For a high γ of 6% or higher, the model has

essentially the same behavior as the model without DNWR. The outcomes of the model

unrelated to unemployment are only affected slightly by the choice of γ.
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Table 1: Parameter values used

Parameter Value Description Source
δ 1 Lower bound in DNWR Normalization
γ 4% Growth rate of world nominal GDP in $ Suggestive
ν 0.55 Inverse elasticity of moving across sectors RUV
σ 6 Trade elasticity Trade Literature

Notes: This table contains the parameter values used in the baseline specification, to-
gether with their description and the source where they are taken from.

Parameter ν for the inverse elasticity of moving across sectors is taken directly from

RUV and set to 0.55. In that paper, the inverse elasticity of moving across sectors is set to

match the evidence shown in Autor et al. (2013) on how more exposure to the China shock

across U.S. commuting zones affects labor force participation. As we will discuss in Section

5, our results do not change substantially when using other reasonable values of ν. Finally,

we set σs to 6 in all sectors, which implies a trade elasticity of -5, consistent with the trade

literature (see, e.g., Costinot and Rodriguez-Clare, 2014).13

3.3 Trade Shock

As indicated in the introduction, the baseline exercise examines a 12% increase in the

iceberg trade costs of sending products across countries that reverts after three years. We

also explore, in alternative exercises described in Section 5, how the effects of the shock

depend on its size (i.e., 6%, 18%, or 24% instead of 12%) or persistence (i.e., 2, 4, 5, or 6

years instead of 3).14

The choice of a 12% magnitude for the increase in trade costs in our baseline specifi-

cation is motivated by the behavior of the producer price index for deep sea freight trans-

portation services, depicted in figure 1. This index increased by approximately 12% from

its pre-pandemic level of 330 to around 370 in December 2021.

13We abstract from the fact that the elasticity of substitution σ can be lower in the short-run vs. the long-run
as documented in Atalay (2017) and Boehm et al. (2019). A lower σ would imply stronger responses in
labor demand.

14While we model a general shock to all regions and sectors (as opposed to estimating which regions and
sectors of the world were subject to a more severe shock due to shipping networks as in Ganapati et al.,
2021), different regions and sectors are still differentially exposed to the shock due to their differential trade
exposure.
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Figure 1: PPI for deep sea freight transportation services between January 2015 and
January 2022, taken directly from FRED.

It is worth noting that the aforementioned producer price index may not capture the

full increase in the cost of cross-border trade, as other trade cost components could have

also risen. Nevertheless, iceberg trade costs in trade models also include non-physical

factors such as marketing or research costs for entry into a foreign country, which may not

have risen as much as physical costs. Overall, we view the 12% increase in the iceberg trade

cost as a suggestive benchmark and assess the sensitivity of our results to different values

of this parameter.

The choice of a three-year duration for the shock is based on current evidence sug-

gesting that global supply chain disruptions have largely subsided by early 2023. Thus,

we assume that high trade costs are in effect for 2020, 2021, and 2022, but then dissipate

by 2023. In Section 5, we examine how different shock duration impacts the results. We

find that longer-lasting shocks lead to more severe outcomes because, given the costs of

switching sectors, it makes more sense to pay the cost for more extended shocks than it
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does for more transitory ones.

4 Baseline Results

This section investigates the effects of a 12% increase in the iceberg trade costs of send-

ing products across countries on labor outcomes for the United States.

Our baseline exercise uses a model where there is no migration across U.S. states,

world nominal GDP in dollars grows at 4% per year, and the trade cost shock lasts for

three years (2020-2022). We discuss the effects on labor force participation, employment,

and unemployment in the aggregate, as well as on labor supply to the broad sectors of

manufacturing, services, and agriculture. We also assess how these effects vary across dif-

ferent U.S. states. Importantly, we also compare how nominal GDP in the data reacted to

the trade cost shock (through the lens of our exposure measure) with how this occurs in

the model. Cross-country results are discussed in Section 6.

Figure 2 displays the effects of the shock on model-implied employment-related out-

comes for the United States as a whole. The blue line depicts the cumulative percentage

change in employment since 2019, the green line shows the cumulative percentage change

in labor supply since 2019, and the red line shows the level of unemployment (in percent).

We find that aggregate U.S. labor supply in the model decreases during the years when

the trade shock is active, with the largest cumulative decline of 0.7% occurring in 2022.

The fall in labor supply occurs because, while trade costs are high, participating in the

home-production sector (which offers a constant real utility flow) temporarily becomes

more attractive than participating in the market sectors. This is due to the fact that high

trade costs make the market sectors less productive because intermediate inputs from other

countries are more expensive, which is akin to a fall in productivity. Although aggregate

nominal wages increase at a faster-than-normal pace during the period of high trade costs,

aggregate prices increase even faster, resulting in a decrease in real wages (see appendix

figure D.1), which is what causes some individuals to exit the labor force.

The recovery of labor supply once the shock disappears is slow, by 2027 labor supply

is still 0.2% lower than pre-shock. In the model, the costs of switching between market sec-
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Figure 2: Paths of relevant variables for the U.S. on aggregate. The cumulative percent-
age change in employment since 2019 is in blue, the cumulative percentage change in
labor supply since 2019 is in green, and the level of unemployment (in percent) is in red.
The years in the x-axis go from 2019 until 2035.

tors and the costs of entering/exiting the labor force are calibrated based on pre-pandemic

mobility patterns. These patterns suggest that there are substantial costs associated with

reallocating across sectors, which explains why agents return to the labor force gradually.

Although the pandemic may have altered the costs of switching between sectors, the model

does not account for such changes.15

Unemployment is generated mostly when the shock dissipates, with the peak amount

15Another limitation of our model is that it does not feature an income effect on labor supply, because the
agents do not have a level of wealth or assets that enters their labor decision. Agents simply compare their
real consumption of participating in home production (which is constant) against the real consumption they
obtain from participating in a given market sector (which is given by the real wage in that sector adjusted
for unemployment). Moreover, the agents cannot choose their level of employment (or their “hours”); they
simply choose their sector and supply all their units of labor inelastically to that sector.
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of unemployment of 0.32% occurring in 2023. As mentioned above, during the years with

high trade costs nominal wages are increasing faster than usual, so the downward wage

rigidity mostly does not bind. By contrast, when the shock dissipates nominal wages need

to fall in some region-sectors.16 Consequently, those locations hit the DNWR and experi-

ence some temporary unemployment.

While, at first glance, it might seem counterintuitive that unemployment is generated

when the shock dissipates instead of when it first hits, recall that our model is, intention-

ally, not capturing the lockdowns or health disruptions induced by the COVID-19 pan-

demic. We do this in an attempt to isolate the effects of the increase in international trade

costs. As such, it is not surprising that we do not observe a spike in unemployment during

2020 when the pandemic first hit. In addition, the amount of unemployment generated

depends on the degree of monetary accommodation, as we discuss further in Section 5.

The blue line in figure 2, which shows the cumulative change in employment since

2019, is essentially the combination of the green and red lines (labor supply and unem-

ployment). Importantly, even though the trough for labor supply occurs in the year 2022,

the trough for employment occurs in 2023, due to the additional unemployment generated

when the trade-cost shock dissipates.

Figure 3 displays the cumulative percentage change since 2019 of activity (i.e., the

number of people engaged) in four different broad sectors for the U.S. as a whole, as im-

plied by the model. Home production is depicted in blue, manufacturing in green, services

in red, and agriculture in purple. While home production and manufacturing show an

increase during the period when the shock is active, services and agriculture decline.

The rise in home production has already been explained above, so we now focus on

the employment changes in the other sectors. Several forces affect employment in each

market sector. First, there is a general decrease in demand due to the aggregate fall in em-

ployment (with people out of work there is less spending power). Second, intermediate

16While high trade costs are active, agents are flowing out of the labor force, which forces nominal wages to
increase faster than usual to attain the γ growth of nominal GDP embedded in the nominal anchor. Once
trade costs return to their normal level, agents flow back into the labor force, which implies nominal wages
must grow more slowly than usual (or in some cases fall) to satisfy the nominal anchor. This is reminiscent
of central banks around the world withdrawing monetary accommodation once the pandemic and supply
disruptions subsided and the labor market normalized.
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Figure 3: Paths of aggregate participation for different broad sectors in the U.S. The
percentage change in home production from the baseline year of 2019 is in blue, the
percentage change in labor supply to the manufacturing sector since 2019 is in green,
the same concept for the service sector is in red, and for the agricultural sector is in
purple.

inputs become more expensive, making production less efficient and decreasing labor de-

mand. Third, there is an expenditure-switching effect across countries: imports become

more expensive and tend to be substituted with local production, increasing labor demand

in net-importing sectors.

The United States is a net exporter of services and has balanced trade in agriculture,

in these sectors the first two effects mentioned in the previous paragraph dominate, de-

creasing participation. By contrast, the United States is a net manufacturing importer. In

this sector, the expenditure-switching effect dominates and participation increases. Since

manufacturing is the sector that experiences an increase in participation (and the highest

increase in nominal wages) during the years when the shock is active, it is also the sector
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Figure 4: Map for the cumulative percentage change in participation between 2019 and
2022 across U.S. states. Darker shades of blue represent smaller falls in participation.

that suffers most of the unemployment when the shock dissipates.

Appendix figure D.2 depicts the evolution of relative sectoral prices (nominal sectoral

prices divided by the aggregate price index). Manufacturing experiences the highest in-

crease in relative price (up to 4%). Agriculture’s relative price increases slightly (up to 1%),

while the relative price of services decreases (up to -1%).

Turning to regional results, figure 4 presents a map of the cumulative percentage

change in labor force participation between 2019 and 2022 for U.S. states. Some of the states

where labor participation falls the most are Alaska, Nevada, and Hawaii, while some states

where it falls the least are Pennsylvania, Ohio, and Wisconsin.

While the states where participation falls the most tend to have a relatively large ser-

vice sector and the ones where participation falls the least tend to have a larger manufac-

turing sector, the way the shock affects each state is not immediately apparent. This is

because the fall in participation and the amount of unemployment generated depend on

several factors, such as the distribution of labor across sectors, deficits in the pre-pandemic

period, and exposure to trade with other countries and other U.S. states, among others.
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4.1 Effects on Nominal GDP in Model and Data

So far, we have exclusively presented and discussed model-generated results. We are

now interested in testing how the model predictions compare to real-world data. However,

there are many shocks unrelated to trade costs that impacted real-world outcomes during

the pandemic that our model intentionally abstracts from. These unrelated shocks would

render a direct comparison between model and data pointless. Therefore, our approach to

provide model validation consists on projecting the change in nominal GDP across states

on our measure of exposure, which is precisely designed to capture the response of nominal

GDP to trade cost shocks in a given region.

Specifically, we run the following state-level regression:

∆GDPs = β0 + β1η̂s(τ̂) + ϵs, (1)

where ∆GDPs corresponds to the percentage change between 2019 and 2022 in the nominal

GDP of state s (either in the model or in the real-world data) and η̂s(τ̂) represents the

exposure measure to the trade cost shock that we introduced in Section 2.1. The results are

presented in table 2.

Notice first that the β1 coefficient estimated from the model (-2.45) is very close to the

one estimated in the data (-2.53). This shows that nominal GDP across U.S. states in the

Table 2: Change in nominal GDP across states projected on exposure

Model Data
(1) (2)

β1 -2.456*** -2.533*
(0.158) (1.334)

Number of observations 50 50
R2 0.764 0.055

Notes: This table presents coefficient β1 and its standard error (in brackets) estimated
from regression (1). In Column (1), the dependent variable is the percentage change
between 2019 and 2022 across U.S. states implied by the model, while in column (2) the
dependent variable is the percentage change between 2019 and 2022 across U.S. states in
the real-world data. Standard errors are robust to heteroskedasticity. Asterisks denote
statistical significance: *=10%, **=5%, ***=1%.
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data responded to exposure in a very similar manner to the one predicted by the model,

indicating that the model has a remarkably good fit. In terms of economic magnitudes,

columns (1) and (2) both imply that a state with a one-standard-deviation (s.d. = 0.429)

higher exposure to the shock suffers a roughly 1 percentage point greater fall in nominal

GDP than an otherwise comparable state. While both the significance of the β1 coefficient

and the R2 of the regression for the model-implied response are higher than those for the

data-implied response, this is not surprising given that there are many other economic

shocks during the analysis period that affected nominal GDP that our model intentionally

abstracts from.

5 Alternative Assumptions

This section explores how our results change if we make different assumptions regard-

ing the persistence or size of the shock or the nominal growth rate of world GDP in dollars.

We also touch briefly on the consequences of allowing for migration between U.S. states or

changing the elasticity of switching sectors.

To begin, we focus on persistence. Different amounts of persistence are captured by

having the shock revert after 2, 4, 5, or 6 years instead of 3 years (which is the baseline as-

sumption). Figure 5 illustrates the cumulative change in participation in the broad sectors

of home production, manufacturing, and services (agriculture is excluded for simplicity

and because it is a small sector) for different values of persistence.

A higher persistence leads to a greater increase in home production and a more sub-

stantial decrease in services. Manufacturing, however, is much less sensitive to changes in

persistence. This is due to the fact that, out of the three factors affecting sectoral reallocation

(fall in aggregate demand, lower productivity, and expenditure switching), a longer shock

exacerbates the fall in aggregate demand without increasing the expenditure switching ef-

fect. The amount of unemployment generated across different amounts of persistence is

essentially the same (i.e., around 0.32%).

We can also explore the impact of varying the size of the shock. Figure 6 depicts the

cumulative change in participation in home production, manufacturing, and services for
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Figure 5: Paths of aggregate U.S. participation for home production, manufacturing,
and services across different values for the persistence of the shock. Blue depicts a 2-
year persistence, green 3, yellow 4, orange 5, and red 6. A solid line depicts home
production, a dashed line depicts manufacturing, and a line with circle markers depicts
services.

four different values of the shock: 6%, 12%, 18%, and 24%. A larger shock tends to amplify

the effects discussed earlier and generates more unemployment for a given value of γ (the

growth rate of world nominal GDP in dollars). In turn, more unemployment discourages

participation in the manufacturing sector.

Next, we consider the effects of assuming different values for the annual growth rate of

world nominal GDP in dollars (γ). Figure 7 depicts the cumulative change in participation

in the broad sectors of home production, manufacturing, and services for different values

of γ. A higher γ makes the DNWR less likely to bind and decreases the unemployment

generated by the shock. In addition, it leads to a smaller participation increase in home
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Figure 6: Paths of aggregate U.S. participation for home production, manufacturing,
and services across different sizes of the shock. Blue depicts a 6% shock, green 12%,
orange 18%, and red 24%. A solid line depicts home production, a dashed line depicts
manufacturing, and a line with circle markers depicts services.

production, a larger increase in manufacturing, and a smaller fall in services. The manu-

facturing sector is particularly sensitive to the value of γ (as it is to the size of the shock)

because it is the sector where most of the unemployment occurs when the shock dissipates.

If agents realize that a lot of unemployment will be generated, they will hesitate to go into

manufacturing in the first place.

The amount of unemployment generated across values of γ differs substantially. While

for γ = 4% unemployment reaches 0.32% at its peak, this maximum can reach 1.3% if

γ = 3%, and almost 3% if γ = 2%. In this sense, the model is highly non-linear due to

the one-sided nature of the DNWR. More monetary policy accommodation (i.e., a higher
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Figure 7: Paths of participation for home production, manufacturing, and services
across different values for the growth of world nominal GDP in dollars (γ). Blue de-
picts 6% growth, green 5%, yellow 4%, orange 3%, and red 2%. A solid line depicts
home production, a dashed one depicts manufacturing, and a line with circle markers
depicts services.

γ) when the shock disappears can help alleviate the unemployment consequences of the

shock.

Allowing for migration within U.S. states has a small impact on the results discussed

so far. Note that when we allow for migration across U.S. states, there is a new elasticity

1/κ of moving across states that comes into play. RUV calibrate κ to 12 in order to match

the evidence found by Autor et al. (2013) on how population across states responds to the

China shock. Given that the population response is small, the elasticity of moving across

states is calibrated to be low. Additionally, since U.S. states do not have extreme variation

in their exposure to the shock we study, the need for reallocation is not too large.

Finally, changes in the inverse elasticity of moving across sectors (ν) do not have a
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major impact on the results. Naturally, the higher the ν, the lower the elasticity with which

agents move across sectors, and hence the smaller the reallocation that occurs due to the

trade-cost shock. However, for reasonable values of ν between 0.35 and 0.75 (recall that the

baseline value is 0.55), the results discussed above do not change substantially.17

6 International Results

In this section, we turn our attention to how the impacts of the trade shock vary across

countries. The shock itself is uniform in how it affects the iceberg trade costs of sending

products across countries. Nevertheless, countries’ exposures to the shock vary due to

differences in their openness levels, size, and sectoral compositions. Figure 8 illustrates this

idea by displaying the model-implied change in home production participation between

2019 and 2022 for all 38 countries in our sample. The figure shows that large countries such

as the United States, China, Japan, Brazil, and India, which are less reliant on international

trade due to the size of their domestic market, experience relatively smaller increases in

home production participation due to the trade shock. In contrast, smaller and more open

countries such as Ireland, Hungary, Estonia, Slovakia, and Cyprus, suffer a greater increase

in home production participation (akin to a fall in the labor force).

Figure 9 gives a scatter plot between the exposure measure on the x-axis and the

model-implied change in participation in home production between 2019 and 2022 on

the y-axis. The plot reveals a tight relationship between the exposure measure and the

change in participation. Although the exposure measure is a first-order approximation to

the change in nominal GDP that operates through revenue exposure, it still provides a rea-

sonably good fit for the change in participation between 2019 and 2022. A regression of

participation change on the exposure measure plus a constant has an R-squared of 91%,

and the exposure measure has a p-value substantially below 0.01%.

The reduction in welfare due to the increase in trade costs is tightly correlated with

the fall in labor force participation between 2019 and 2022, because it is driven by the same

17These results are not included for conciseness but they are available upon request.
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Figure 8: Percentage change in home production participation between 2019 and 2022
across countries, in percent. See appendix C.1 for country abbreviation codes.

factors. Appendix figure D.4 displays the welfare change across countries.18 The welfare

loss for the United States is approximately 14 basis points. The minimum welfare loss of 13

basis points occurs in China, while the maximum one of 97 basis points occurs in Ireland.

The unweighted average welfare loss across the 38 countries in the sample (including the

“rest of the world” region) is 37 basis points, while the weighted one is 19 basis points. The

fact that the unweighted welfare loss is almost twice as high as the weighted one provides

another illustration that countries with smaller populations do much worse in response to

the shock than countries with larger populations.

18The welfare change is measured as the equivalent variation in consumption required by agents in the model
in the base year to be indifferent between the counterfactual economy where the trade costs increase and
the baseline economy where they do not. The formula is given in RUV, it is a present value sum where we
use an annual discount factor of β = 0.95.
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Figure 9: Scatter plot of the percentage change in home production participation be-
tween 2019 and 2022 against the exposure measure across countries. See appendix C.1
for country abbreviation codes. See Section 2.1 for the definition of exposure.

Turning to results in specific sectors, figure 10 illustrates the change in model-implied

manufacturing employment across countries between 2019 and 2022.19 In addition to the

aforementioned factors that influence the overall change in labor participation, the change

in manufacturing employment also depends on the initial deficit in manufacturing. Coun-

tries that are net manufacturing importers, such as the United States, Great Britain, Russia,

or Cyprus, need to substitute foreign imports with domestic production, driving up the

change in manufacturing employment.

19Similarly, appendix figures D.5 and D.6 show changes in service and agricultural employment across coun-
tries between 2019 and 2022.

29



 Manufacturing employment change between 2019 and 2022

HUN
SVK

IR
L
BEL

SVN
EST

CZE
TW

N
AUT

BGR
NLD FIN

LT
U
SW

E
POL

DNK
M

EX
PRT

DEU
KOR

CAN IT
A
FRA

IN
D

ID
N
CHN

TUR
GRC

ROU
JP

N
ESP

RoWBRA
AUS

CYP
USA

RUS
GBR

 Country

-12

-10

-8

-6

-4

-2

0

2
 C

ha
ng

e 
be

tw
ee

n 
20

19
 a

nd
 2

02
2,

 in
 %

Figure 10: Percentage change in manufacturing employment between 2019 and 2022
across countries, in percent. See appendix C.1 for country abbreviation codes.

7 Conclusion

In this paper, we use a dynamic quantitative trade model with an input-output struc-

ture and downward nominal wage rigidity to study the effects of temporary increases in

trade costs. While the exercise is not meant to fully explain the labor market effects of the

COVID-19 pandemic, the baseline quantification aims to isolate the effect of a trade cost

increase of comparable magnitude and duration to the one experienced during the pan-

demic period. Using the structure of the model, we construct an exposure measure to test

the model’s fit with the data and isolate the effect coming from the change in trade costs.

Our analysis reveals five main results for the United States. First, there is a tempo-

rary but persistent decline in labor force participation: while the high trade cost is active,
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participating in the home production sector (which has a constant real utility flow) tem-

porarily becomes more attractive. Second, there is a temporary increase in manufacturing

employment, a highly tradable sector for which the United States is a net importer. By

contrast, there are temporary reductions in service and agricultural employment. Third,

unemployment is generated when the shock disappears because this is the moment when

the downward nominal wage rigidity binds. The bulk of the unemployment is generated

in manufacturing, where wages increase during the period of high trade costs and must de-

crease when the shock dissipates. Fourth, in general labor force participation tends to fall

more in states with a larger service sector (such as Alaska, Nevada, and Hawaii) and less

in states with larger manufacturing sectors (such as Ohio, Pennsylvania, and Wisconsin).

Finally, in regards to the model’s fit, we regress the change in nominal GDP across states

predicted by the model on our exposure measure, repeat the same exercise in real-world

data, and find remarkably similar point estimates.

Our country-level analysis finds that large or closed countries experience smaller de-

clines in labor participation following the shock, while small or open economies experience

larger ones. Although this result may seem intuitive, our model provides quantitative es-

timates of the changes in participation in home production derived from a state-of-the-art

trade model, as well as changes in employment in specific sectors such as manufacturing,

services, and agriculture.

The framework we propose offers policymakers a valuable tool for estimating the

potential impacts of changes in trade costs across countries or sectors lasting different

amounts of time. Given the increased risk of supply chain disruptions, our model can

be useful in devising effective policy responses.
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Appendix

A Model Equations

The model economy is composed of multiple regions (indexed by i or j). There are M

regions inside the U.S. (the 50 U.S. states), plus I − M regions (countries) outside of the U.S.

(for a total of I regions). We assume that there is no labor mobility across different coun-

tries, but can allow for mobility across different states of the U.S. There are S + 1 sectors

in the economy (indexed by s or k), with sector zero denoting the home production sector

and the remaining S sectors being productive market sectors. In each region j and period

t, a representative consumer participating in the market economy devotes all income to

expenditure Pj,tCj,t, where Cj,t and Pj,t are aggregate consumption and the price index re-

spectively. Aggregate consumption is a Cobb-Douglas aggregate of consumption across

the S different market sectors with expenditure shares αj,s. As in a multi-sector Armington

trade model, consumption in each market sector is a CES aggregate of consumption of the

good of each of the I regions, with an elasticity of substitution σs > 1 in sector s.

Each region produces the good in sector s with a Cobb-Douglas production function,

using labor with share ϕj,s and intermediate inputs with shares ϕj,ks, where ϕj,s + ∑k ϕj,ks =

1. TFP in region j, sector s, and time t is Aj,s,t. There is perfect competition and iceberg

trade costs τij,s,t ≥ 1 for exports from i to j in sector s. Intermediates from different origins

are aggregated in the same way as consumption goods. Letting Wi,s,t denote the wage in

region i, sector s, at time t, the price in region j of good s produced by region i at time t is

then

pij,s,t = τij,s,t A−1
i,s,tW

ϕi,s
i,s,t ∏

k
Pϕi,ks

i,k,t , (A1)

where Pi,k,t is the price index of sector k in region i at time t. Given our Armington assump-

tion, these price indices satisfy

P1−σs
j,s,t =

I

∑
i=1

p1−σs
ij,s,t , (A2)
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with corresponding trade shares

λij,s,t ≡
p1−σs

ij,s,t

∑I
r=1 p1−σs

rj,s,t

. (A3)

Let Ri,s,t and Li,s,t denote total revenues and employment in sector s of country i, re-

spectively. Noting that the demand of industry k of country j of intermediates from sector

s is ϕj,skRj,k,t and allowing for exogenous deficits, the market clearing condition for sector

s in country i can be written as

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
S

∑
k=1

Wj,k,tLj,k,t + Dj,t

)
+

S

∑
k=1

ϕj,skRj,k,t

)
, (A4)

where Dj,t are transfers received by region j, with ∑j Dj,t = 0. In turn, employment must

be compatible with labor demand,

Wi,s,tLi,s,t = ϕi,sRi,s,t. (A5)

Agents can either engage in home production or look for work in the labor market. If

they participate in the labor market, they can be employed in any of the S market sectors.

We let ci,0,t denote consumption associated with home production in region i, and ci,s,t

denote consumption associated with seeking employment in sector s and region i at time t.

We assume that ci,0,t is exogenous and does not vary over time, while – as explained further

below – ci,s,t is endogenous and depends on real wages and unemployment. Additionally,

we denote the number of agents that participate in region i, sector s, at time t, by ℓi,s,t.

Agents are forward looking and they face a dynamic problem where they discount

the future at rate β. Relocation decisions are subject to sectoral and spatial mobility costs.

Specifically, there are costs φji,sk of moving from region j, sector s to region i, sector k.

These costs are time invariant, additive, and measured in terms of utility. Additionally,

agents have additive idiosyncratic shocks for each choice of region and sector, denoted by

ϵi,s,t.

An agent that starts in region j and sector s observes the economic conditions in all
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labor markets and the idiosyncratic shocks, then earns real income cj,s,t and has the option

to relocate. The lifetime utility of an agent who is in region j, sector s, at time t, is then:

νj,s,t = ln(cj,s,t) + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− φji,sk + ϵi,k,t}.

We assume that the joint density of the vector ϵ at time t is a nested Gumbel:

F(ϵ) = exp

−
I

∑
i=1

(
S

∑
k=0

exp (−ϵi,k,t/ν)

)ν/κ
 ,

where κ > ν. This allows us to have different elasticities of moving across regions and

sectors. Let Vj,s,t ≡ E(νj,s,t) be the expected lifetime utility of a representative agent in

labor market j, s. Then, using γ to denote the Euler-Mascheroni constant, we have

Vj,s,t = ln(cj,s,t) + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − φji,sk
)1/ν

)ν/κ
κ

+ γκ. (A6)

Denote by µji,sk|i,t the number of agents that relocate from market js to ik expressed as

a share of the total number of agents that move from js to ik′ for any sector k′. Additionally,

let µji,s#,t denote the fraction of agents that relocate from market js to any market in i as a

share of all the agents in js. As shown in RUV, these fractions are given by

µji,sk|i,t =
exp

(
βVi,k,t+1 − φji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − φji,sh

)1/ν
(A7)

µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − φji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − φjm,sh
)1/ν

)ν/κ
. (A8)

The total number of agents that move from js to ik is given by µji,sk = µji,sk|i,t · µji,s#,t.

Participation in the different labor markets evolves according to

ℓi,k,t+1 =
I

∑
j=1

S

∑
s=0

µji,sk|i,tµji,s#,tℓj,s,t (A9)
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The aggregate price index in region i at time t is given by:

Pi,t =
S

∏
s=1

Pαi,s
i,s,t. (A10)

We assume that the income generated in a sector-region is equally shared between all

participants in that sector-region. Since agents get real wage Wi,s,t/Pi,t with probability

Li,s,t/ℓi,s,t if they seek employment in sector s of region i at time t, we have

ci,k,t =
Wi,k,t

Pi,t
· Li,k,t

ℓi,k,t
. (A11)

We denote the number of agents that are actually employed in region i and sector k

at time t with Li,k,t. In a standard trade model, labor market clearing requires that the

labor used in a sector and region be equal to labor supplied to that sector, i.e. Li,k,t = ℓi,k,t.

We depart from this assumption and instead follow Schmitt-Grohe and Uribe (2016) by

allowing for downward nominal wage rigidity, which might lead to an employment level

that is strictly below labor supply,

Li,k,t ≤ ℓi,k,t. (A12)

All prices and wages up to now have been expressed in U.S. dollars. In contrast, a

given region faces DNWR in terms of its local currency unit. Letting WLCU
i,k,t denote nominal

wages in local currency units, the DNWR takes the following form:

WLCU
i,k,t ≥ δkWLCU

i,k,t−1, δk ≥ 0.

Letting Ei,t denote the exchange rate between the local currency unit of region i and the

local currency unit of region 1 (which is the U.S. dollar) in period t (in units of dollars per

LCU of region i), then Wi,k,t = WLCU
i,k,t Ei,t and so the DNWR for wages in dollars entails

Wi,k,t ≥ Ei,t

Ei,t−1
δkWi,k,t−1.
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Since all regions within the U.S. share the dollar as their LCU, then Ei,t = 1 and

WLCU
i,k,t = Wi,k,t ∀ i ≤ M. This means that the DNWR in states of the U.S. takes the fa-

miliar form Wi,k,t ≥ δkWi,k,t−1. For the I − M regions outside of the U.S., the LCU is not

the dollar and so the behavior of the exchange rate impacts how the DNWR affects the real

economy. The DNWR in dollars can then be captured using a country-specific parameter

δi,k, i.e.:

Wi,k,t ≥ δi,kWi,k,t−1, δi,k ≥ 0. (A13)

The baseline model assumes that all regions outside of the U.S. have a flexible exchange

rate (so the DNWR never binds). This is captured by setting δi,k = δk ∀ i ≤ M and

δi,k = 0 ∀ i > M. There is also a complementary slackness condition,

(ℓi,k,t − Li,k,t)(Wi,k,t − δi,kWi,k,t−1) = 0. (A14)

So far, we have introduced nominal elements to the model (i.e., the DNWR), but we

have not introduced a nominal anchor that prevents nominal wages from rising so much

in each period as too make the DNWR always non-binding. We now want to capture the

general idea that central banks are unwilling to allow inflation to be too high because of its

related costs. In traditional macro models, this is usually implemented via a Taylor rule,

where the policy rate reacts to inflation. Instead, we use a nominal anchor that captures a

similar idea in a way that naturally lends itself to quantitative implementation in our trade

model. A similar nominal anchor is used in Guerrieri et al. (2021), albeit in the context of a

static, closed economy model. In particular, we assume that world nominal GDP in dollars

grows at a constant rate γ every year,

I

∑
i=1

K

∑
k=1

Wi,k,tLi,k,t = (1 + γ)
I

∑
i=1

K

∑
k=1

Wi,k,t−1Li,k,t−1. (A15)

The main benefit of this nominal anchor assumption is that it allows us to solve our other-

wise-unwieldy model using a fast contraction-mapping algorithm in the spirit of Alvarez

and Lucas (2007) that we develop to deal with the complementary slackness condition
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brought by the DNWR.

Following CDP, we can think of the full equilibrium of our model in terms of a tempo-

rary equilibrium and a sequential equilibrium. In our environment with DNWR, given last

period’s nominal world GDP (∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1), wages {Wi,s,t−1}, and the current

period’s labor supply {ℓi,s,t}, a temporary equilibrium at time t is a set of nominal wages

{Wi,s,t} and employment levels {Li,s,t} such that equations (A1)-(A5) and (A12)-(A15) hold.

In turn, given starting world nominal GDP (∑I
i=1 ∑S

s=1 Wi,s,0Li,s,0), labor supply {ℓi,s,0},

and wages {Wi,s,0}, a sequential equilibrium is a sequence {ci,s,t, Vi,s,t, µji,sk|i,t, µji,s#,t, ℓi,s,t,

Wi,s,t, Li,s,t, }∞
t=1 such that: (i) at every period t {Wi,s,t, Li,s,t} constitute a temporary equi-

librium given ∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1, {Wi,s,t−1}, and {ℓi,s,t}, and (ii) {ci,s,t, Vi,s,t, µji,sk|i,t,

µji,s#,t, ℓi,s,t}∞
t=1 satisfy equations (A6)-(A11).

We are interested in obtaining the effects of the trade cost shock as it is introduced in an

economy that did not previously expect this shock. In order to do this we will use the exact

hat algebra methodology of Dekle et al. (2007), extended to dynamic settings by Caliendo

et al. (2019). Specifically, we use x̂t to denote the ratio between a relative time difference

in the counterfactual economy (ẋ′t) and a relative time difference in the baseline economy

(ẋt), i.e. x̂t = ẋ′t/ẋt for any variable x. Then we compare a counterfactual economy where

the knowledge of the trade shock is unexpectedly introduced in the year 2020 (and agents

have perfect foresight about the path of the shock from then on), with a baseline economy

where the trade shock does not occur.

B Exposure of a Region to a Trade Shock

Notice that, omitting the time subscript and introducing equation (A4) into it, equation

(A5) can be written as:

Wi,sLi,s = ϕi,s

I

∑
j=1

λij,sXj,s,

where Xj,s is the total expenditure of location j in sector s and the trade shares can now be

expressed as

λij,s =
(mci,sτij,s)

1−σs

∑I
r=1(mcr,sτrj,s)1−σs

,
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with

mci,s =
Wϕi,s

i,s ∏S
k=1 Pϕi,ks

i,k

Ai,s
, (B1)

and

Pi,s =

(
I

∑
j=1

(mcj,sτji,s)
1−σs

) 1
1−σs

. (B2)

We are interested in constructing an exposure measure for region i to a change in the

whole vector of iceberg trade costs τ (as done, for example, in AAE). We define as our

outcome of interest the total wage bill (WB) in region i:

WBi =
S

∑
s=1

Wi,sLi,s.

Then, we can obtain the exposure measure from a first order approximation to the previ-

ous equation (keeping the Xj,s fixed as is commonly done when deriving such exposure

measures):

d ln WBi =
S

∑
s=1

(1 − σs)
Wi,sLi,s

∑k Wi,kLi,k︸ ︷︷ ︸
ωi,s

(
I

∑
j=1

λij,sXj,s

∑n λin,sXn,s︸ ︷︷ ︸
rij,s

[
d ln τij,s + d ln mci,s

−
I

∑
q=1

λqj,s(d ln τqj,s + d ln mcq,s)

])
, (B3)

where ωi,s corresponds to the share of wage bill from sector s in the total wage bill of region

i and rij,s corresponds to the share of sales of region i-sector s in region j. The formula is

similar to the one in AAE, the differences are that here the marginal cost is allowed to vary

with the trade shock (which is relevant due to the presence of intermediate inputs) and

that in AAE ℓi,s corresponds to the share of labor in sector s in region i whereas here it is a

share of the wage bill.

Taking the partial derivative of (B1) with respect to trade costs, we get:

d ln mci,s = ∑
k

ϕi,ksd ln Pi,k, (B4)
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which we can write as:

m̂c = ΦP̂ , (B5)

where m̂c is a (I · S)× 1 vector of marginal cost changes, P̂ is a (I · S)× 1 vector of price

changes, and Φ is a (I · S)× (I · S) block diagonal matrix that contains as its i-th diagonal

block the input-output matrix of region I.

If we then take derivative with respect to trade costs in (B2), we get:

d ln Pi,k =
I

∑
j=1

λji,k(d ln τji,k + d ln mcj,k), (B6)

which we can write as:

P̂ = Λ1τ̂ + Λ2m̂c, (B7)

where Λ1 is a (I · S)× (I · I · S) matrix of trade shares, τ̂ is a (I · I · S)× 1 vector of trade cost

changes, and Λ2 is a (I · S)× (I · S) different (from Λ1) matrix of trade shares. Introducing

(B5) in this last equation, we get:

P̂ = Λ1τ̂ + Λ2ΦP̂

(I − Λ2Φ)P̂ = Λ1τ̂

P̂ = (I − Λ2Φ)−1Λ1τ̂ . (B8)

Therefore, we conclude that:

m̂c = Φ(I − Λ2Φ)−1Λ1τ̂ . (B9)

We can use this equation to write (B3) solely in terms of the trade cost shock.
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C Data Construction

C.1 Data Description and Sources

List of sectors. We use a total of 14 market sectors. The list includes 12 manufactur-

ing sectors, one catch-all services sector, and one agriculture sector (ICIO sectors D01T02,

D03). We follow RUV in the selection of the 12 manufacturing sectors. These are: 1) Food,

beverage, and tobacco products (NAICS 311-312, ICIO sector D10T12); 2) Textile, textile

product mills, apparel, leather, and allied products (NAICS 313-316, ICIO sector D13T15);

3) Wood products, paper, printing, and related support activities (NAICS 321-323, ICIO

sectors D16, D17T18); 4) Mining, petroleum and coal products (NAICS 211-213, 324, ICIO

sectors D05T06, D07T08, D09, D19); 5) Chemicals (NAICS 325, ICIO sectors D20, D21); 6)

Plastics and rubber products (NAICS 326, ICIO sector D22); 7) Nonmetallic mineral prod-

ucts (NAICS 327, ICIO sector D23); 8) Primary metal and fabricated metal products (NAICS

331-332, ICIO sectors D24, D25); 9) Machinery (NAICS 333, ICIO sector D28); 10) Computer

and electronic products, and electrical equipment and appliance (NAICS 334-335, ICIO

sectors D26, D27); 11) Transportation equipment (NAICS 336, ICIO sectors D29, D30); 12)

Furniture and related products, and miscellaneous manufacturing (NAICS 337-339, ICIO

sector D31T33). There is a 13) Services sector which includes Construction (NAICS 23, ICIO

sector D41T43); Wholesale and retail trade sectors (NAICS 42-45, ICIO sectors D45T47); Ac-

commodation and Food Services (NAICS 721-722, ICIO sector D55T56); transport services

(NAICS 481-488, ICIO sectors D49-D53); Information Services (NAICS 511-518, ICIO sec-

tors D58T60, D61, D62T63); Finance and Insurance (NAICS 521-525, ICIO sector D64T66);

Real Estate (NAICS 531-533, ICIO sector D68); Education (NAICS 61, ICIO sector D85);

Health Care (NAICS 621-624, ICIO sector D86T88); and Other Services (NAICS 493, 541,

55, 561, 562, 711-713, 811-814, ICIO sectors D69T75, D77T82, D90T93, D94T96, D97T98).

List of countries: As in RUV, we use data for 50 U.S. states, 36 other countries and

a constructed rest of the world. The list of countries is: Australia (AUS), Austria (AUT),

Belgium (BEL), Bulgaria (BGR), Brazil (BRA), Canada (CAN), China (CHN), Cyprus (CYP),

Czechia (CZE), Denmark (DNK), Estonia (EST), Finland (FIN), France (FRA), Germany
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(DEU), Greece (GRC), Hungary (HUN), India (IND), Indonesia (IDN), Italy (ITA) Ireland

(IRL), Japan (JPN), Lithuania (LTU), Mexico (MEX), the Netherlands (NLD), Poland (POL),

Portugal (PRT), Romania (ROU), Russia (RUS), Spain (ESP), the Slovak Republic (SVK),

Slovenia (SVN), South Korea (KOR), Sweden (SWE), Taiwan (TWN), Turkey (TUR), the

United Kingdom (GBR), and the rest of the world (RoW).

C.2 Data on Bilateral Trade

For bilateral trade between countries we use the OECD’s Inter-Country Input-Output

(ICIO) Database. For data on bilateral trade in manufacturing between U.S states, we com-

bine the Commodity Flow Survey (CFS) with the ICIO database. The CFS records ship-

ments between U.S states for 43 commodities classified according to the Standard Classifi-

cation of Transported Goods (SCTG). We follow CDP and use CFS tables that cross-tabulate

establishments by their assigned NAICS codes against SCTG commodities shipped by es-

tablishments within each of the NAICS codes.

For data on bilateral trade in manufacturing and agriculture between U.S states and

the rest of the countries, we follow RUV and obtain sector-level imports and exports be-

tween the 50 U.S. states and the list of other countries from the Import and Export Mer-

chandise Trade Statistics database, which is compiled by the U.S. Census Bureau.

For data on services and agriculture expenditure and production, we use U.S. state-

level services GDP from the Regional Economic Accounts of the Bureau of Economic Anal-

ysis (BEA), U.S. state-level services expenditure from the Personal Consumption Expendi-

tures (PCE) database of BEA and total production and expenditure in services from ICIO

(for other countries). We also use the Agricultural Census and the National Marine Fish-

eries Service Census to get state-level production data on crops, livestock, and seafood. For

other countries we compute production and expenditure in agriculture from ICIO.

For data on sectoral and regional value added share in gross output, we use data from

the Bureau of Economic Analysis (BEA) by subtracting taxes and subsidies from GDP data.

In the cases when gross output was smaller than value added we constrain value added to

be equal to gross output. For the list of other countries we obtain the share of value added

in gross output using data on value added and gross output data from ICIO.
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C.3 Data on Employment and Labor Flows

For the case of countries, we take data on employment by country and sector from

the WIOD Socio Economic Accounts (WIOD-SEA) and International Labor Organization

(ILO). For the case of U.S. states, we take sector-level employment (including unemploy-

ment and non-participation) from a combination of the Census and the American Com-

munity Survey (ACS). As in RUV, we only keep observations with age between 25 and 65,

who are either employed, unemployed, or out of the labor force. We construct a matrix of

migration flows between sectors and U.S. states by combining data from the ACS and the

Current Population Survey (CPS). Finally, we abstract from international migration.

D Additional Figures
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Figure D.1: Paths of cumulative percentage change since 2019 in real wages for manu-
facturing, services, agriculture, and on aggregate.
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Figure D.2: Paths of cumulative percentage change since 2019 in the relative prices of
manufacturing, services, and agriculture.
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Figure D.3: Paths of cumulative percentage change since 2019 in real output for manu-
facturing, services, agriculture, and on aggregate.
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 Welfare loss across countries
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Figure D.4: Welfare loss from the trade shock across countries, in percent. For country
abbreviation codes see appendix C.1.
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 Service employment change between 2019 and 2022
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Figure D.5: Percentage change in service employment between 2019 and 2022 across
countries, in percent. For country abbreviation codes see appendix C.1.
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 Agricultural employment change between 2019 and 2022
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Figure D.6: Percentage change agricultural employment between 2019 and 2022 across
countries, in percent. For country abbreviation codes see appendix C.1.
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